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Abstract

The reductive holonomy algebras for a torsion-free affine connection are analysed, with the goal of establishing which ones can
correspond to a Ricci-flat connection with the same properties. Various families of holonomies are eliminated through different
algebraic means, and examples are constructed (in this paper and in ‘Projective Holonomy II: Cones and Complete Classification’,
by the same author) in the remaining cases, thus solving this problem completely, for reductive holonomy.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Merkulov and Schwachhöfer have published the full list of reductive holonomy algebras for torsion-free, non-
symmetric affine connections [16,17]. An interesting, and hitherto unresolved question, is which of these holonomy
algebras can correspond to connections which are also Ricci-flat.

In the metric case, for instance, it is well known that Levi-Civita connections with holonomies su(p, q) and
sp(p, q) must be Ricci-flat [19], whereas those with holonomy u(p, q) and sp(p, q) ⊕ sp(1) cannot be Ricci-flat;
we shall call these algebras Ricci-type. Those with holonomy so(n) may be Ricci-flat or not, and we shall attempt to
extend classifying all holonomy algebras into one of these three categories: Ricci-flat, Ricci-type or neither.

It is also well known that Ricci-flat symmetric spaces must have reduced holonomy [14] (in the definite signature
case, they must be flat, since the Ricci tensor must be a non-zero multiple of the Killing form on the Lie algebra
restricted to a non-degenerate subspace [11]). Thus we need only look at those irreducible holonomy algebras which
are non-symmetric.

The results are summarised in Tables 1 and 2, the first one giving the algebras whose connections must be Ricci-flat,
and the second those whose algebras may be Ricci-flat or not.

We shall arrive at these tables algebraically, by using various methods to exclude families of holonomy algebras.
The first section will set up and define the formal curvature modules that were used by Berger and in [16]; the Bianchi
identities define their properties and their relationship with the curvature of a torsion-free connection.

Initial results implied by the Bianchi identity then demonstrate that a Ricci-flat torsion-free connection must
preserve a real volume form and, when appropriate, a complex volume form.
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Table 1
Holonomy algebras that must be Ricci-flat

Algebra g Representation V Restrictions Algebra g Representation V

sl (n,H) Hn n ≥ 1 g2 (C) C7

su (p, q) C(p,q) p + q ≥ 3, (p, q) = (2, 0) spin (7) R8

sp (p, q) H(p,q) p + q ≥ 2 spin (4, 3) R(4,4)
g 2 R7 spin (7,C) C8

g̃ 2 R(4,3)

Table 2
Holonomy algebras that may be Ricci-flat

Algebra g Representation V Restrictions

so (p, q) R(p,q) p + q ≥ 4
so (n,C) Rn n ≥ 4
sl (n,R) Rn n ≥ 3
sl (n,C) Cn n ≥ 2
sp (2n,R) R2n n ≥ 2
sp (2n,C) C2n n ≥ 2

The next family to be dealt with were those that preserve some symplectic form; building on results from [10,8]
it is not hard to show that these holonomies (apart from the maximal sp(2n,R) and sp(2n,C)) are Ricci-type, and
hence cannot correspond to Ricci-flat connections. This result is directly contained in [8].

To continue, we will need to build the formal curvature module of the Lie algebra g, the kernel of the map
V ∗

⊗V ∗
⊗g → ∧

3 V ∗
⊗V where one antisymmetrises over the three V ∗. This module decomposes as g(1)⊕ H1,2(g),

where H1,2(g) is a Spencer cohomology group. The module g(1) is the structure module for the bundle of torsion-free
connections coming from the same principal g-bundle.

The next section deals with the various ‘split’ algebras, those whose representation is (a submodule of) a tensor
product. We use various algebraic tricks to show that all these algebras can be dealt with in the same way, whether
they be real, complex or quaternionic, symmetric, skew or hermitian. We construct a direct isomorphism between
V ∗

⊗ g(1) and the Ricci-curvature module. If we ignore volume forms, all split algebras, except for the minimal Segre
algebras, have flat structure bundles. Consequently, they must be Ricci-type, as must all their subalgebras.

Then we shall look at these ‘minimal’ Segre algebras; in other words, those whose representations are Rm
⊗R R2,

Cm
⊗C C2 or Hm

⊗HH1. Using modifications of ideas that were developed [2] to show that a Ricci-flat Hm
⊗HH1

connection must have holonomy reducing to Hm , we similarly show that any Ricci-flat minimal Segre connection
must have holonomy that reduces.

One last family remains: that of representations of E6, R⊕E6 and their complexifications. That second algebra also
has an isomorphism between V ∗

⊗ g(1) and the Ricci tensor, making it Ricci-type. This is demonstrated by extensive
algebraic manipulations. Note that although E6 and R ⊕ E6 have many formal similarities with split algebras, the
methods of proof are very different.

We shall not construct explicit examples of Ricci-flat connection with the remaining holonomies. This is done
mainly in papers [4,5], as an adjunct to proving the existence of various projective tractor holonomies. In fact,
projective tractor holonomies correspond to Ricci-flat torsion-free affine holonomies on a cone one dimension higher,
and [5] constructs these Ricci-flat cones for all higher dimensional holonomy algebras that are not ruled out by this
paper.

However, there does remain the issue of some lower dimensional algebra that may correspond to Ricci-flat torsion-
free connection but not to cones. These are dealt with in the last section of this paper.

2. Formal curvature modules

2.1. Spencer cohomology

See [16] for an introduction to Spencer cohomology.
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Let h be a Lie algebra and V an h-module. Since h ⊂ gl(V ) = V ⊗ V ∗, we can inductively define the modules:

h(−1)
= V

h(0) = h

h(k) = [h(k−1)
⊗ V ∗

] ∩ [V ⊗ �
k+1 V ∗

].

Furthermore, if Ck,l(h) = h(k) ⊗ ∧
l−1 V ∗ we may define the map

∂ : Ck,l(h) → Ck−1,l+1(h),

via antisymmetrisation on the last l indices. Since ∂2
= 0, there is a complex

Ck+1,l−1(h)
∂

−→ Ck,l(h)
∂

−→ Ck−1,l+1(h)

whose cohomology at the centre term is defined to be H k,l(h). This is called the (k, l) Spencer cohomology group for
(h, V ).

2.2. Formal curvature modules

Given an algebra g and a faithful representation V , there is a naturally defined operator

∂(∧2 V ∗
⊗ g) → ∧

3 V ∗
⊗ V,

considering g as a subset of V ∗
⊗ V , where ∂ is just antisymmetrisation over the three components. Then we define

K (g) = ker ∂.

In other words K (g) obeys the first Bianchi identity. The point of this construction is clear; if there is a torsion-free
connection ν on a principal frame bundle G of the tangent bundle, then the curvature of ν is a section of

G ×G K (g).

Hence we can deduce algebraic facts about the curvature of a G-connection from the module K (g).
By our results on Spencer cohomology from Section 2.1, we know that

0 −→ ∂(V ∗
⊗ g(1)) −→ K (g) −→ H1,2(g) −→ 0.

Since we will be dealing with reductive g’s, there actually is a splitting

K (g) = ∂(V ∗
⊗ g(1))⊕ H1,2(g).

Both of these components have a geometric interpretation; the obstruction for the given G-structure being flat, given
that it is 1-flat – equivalently, M admitting a flat connection with principal bundle G, given that it admits a torsion-free
one – lies in

G ×G H1,2(g)

whereas different torsion-free connections preserving the G-structure differ by sections of

G ×G g(1).

Remark. It is rare for an algebra to have both a g(1) and an H1,2(g) component – both an obstruction to integrability
and a wide class of associated connections – though a few do, such as the conformal R.so(p, q) and the almost
Grassmannian F.sl(n,F).sl(2,F).

The full list of complex algebras with non-zero g(1) is as follows [16]:
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Algebra g Representation V g(1)

sl (n,C) Cn , n ≥ 2 (V ⊗�
2 V ∗)0

gl (n,C) Cn , n ≥ 1 V ⊗ �
2 V ∗

gl (n,C) �
2 Cn , n ≥ 2 V ∗

gl (n,C) ∧
2 Cn , n ≥ 5 V ∗

gl (m,C)⊕ gl(n,C) Cm
⊗ Cn ,m, n ≥ 2 V ∗

sp (2n,C) C2n , n ≥ 2 �
3 V ∗

C∗
⊕ sp (2n,C) C2n , n ≥ 2 �

3 V ∗

co (n,C) Cn , n ≥ 5 V ∗

C∗
⊕ spin (10,C) C16 V ∗

C∗
⊕ eC6 C27 V ∗

Since K (g) is a formal curvature module, we may define the formal Ricci-curvature module R(g) by taking the
trace of K (g). Then possible Ricci-flat curvatures will lie inside the kernel of

K (g) → R(g).

If, on the other hand, this map has no kernel; in other words, if

K (g) ∼= R(g),

then we say that g has Ricci-type curvature. Obviously a connection whose holonomy algebra is Ricci-type cannot be
Ricci-flat without being flat.

2.3. Complex modules

Let (V, J ) be a vector space with complex structure J . By V we mean (V,−J ). Let α : ⊗
j V → ∧

j V be the
natural antisymmetrisation map. Let ⊗

(n,m) V = ⊗
n
C V ⊗C⊗

m
C V . Then we shall define the space ∧

(n,m) as follows:

Definition 2.1.

∧
(n,m) V = α(⊗(n,m) V ).

Obviously, ∧
(n,m) V = ∧(m,n) V , implying that ∧

(n,m) V and ∧
(m,n) V are the same spaces. And, of course,

∧
(n,0) V = ∧

n
C V . It can easily be seen that

Lemma 2.2. ∂(∧(n,m) V ⊗ V ) ⊂ ∧
(n+1,m) V ⊕ ∧

(n,m+1) V if n 6= m, and ∂(∧(n,n) V ⊗ V ) ⊂ ∧
(n+1,1) V .

For the rest of this section, any tensor product is complex unless stated otherwise. Let gR be a real Lie algebra, with
a corresponding complex Lie algebra g. Let VR be a real representation of gR, and V = VR⊗R C the corresponding
representation of g. For any two complex spaces W and U ,

W ⊗RU = (W ⊗ U )⊕ (W ⊗ U ),

the +1 and −1 eigenspaces of the operator J ⊗ J . Similarly, the module ∧
2
R V ∗

⊗R g splits into three submodules:

∧
2
R V ∗

⊗R g = (∧(2,0) V ∗
⊗ g)⊕ (∧(1,1) V ∗

⊗R g)⊕ (∧(0,2) V ∗
⊗ g)

= P1 ⊕ P2 ⊕ P3,

where ∧
(2,0) V ∗

= ∧
2
C V ∗ and ∧

(0,2) V ∗ is the same space with opposite complex structure. The space ∧
(1,1) V ∗

is just the space of skew-hermitian forms; this space does not have a complex structure itself, hence the real tensor
product in the central term. Denote by p1, p2, p3 the projections onto these submodules. These modules are disjoint
from the point of view of the ∂ map:

Lemma 2.3. If ∂(a) = 0, then ∂p j (a) = 0 for all j .
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Proof. Assume ∂(a) = 0. The module P1 is contained in the module ⊗
3 V ∗

⊗ V , so ∂(P1) ⊂ ∧
(3,0) V ∗

⊗ V . By
Lemma 2.2, ∂(P2) and ∂(P3) are both contained in ∧

2,1 V ∗
⊗R V . Consequently, ∂p1(a) must be zero. From now on,

by replacing a with a − p1(a), we may assume that p1(a) = 0.
The operator Θ = J ⊗ J ⊗ J ⊗ J operates naturally on ∧

2
R V ∗

⊗R V ∗
⊗R V , and, since ∂ is an antisymmetrisation

of this space and Θ is entirely symmetric,

Θ ◦ ∂ = ∂ ◦ Θ .

However, Θ(p2(a)) = −p2(a) and Θ(p3(a)) = p3(a), so

∂p2(a) =
1
2
(∂(a)− Θ∂(a)) = 0

and

∂p3(a) =
1
2
(∂(a)+ Θ∂(a)) = 0. �

On the other hand, ∧
(2,0) V ∗

⊗ g is just the complexification of the real module ∧
2
R V ∗

R⊗R gR. So we can directly
classify this piece of the complex module in terms of the real one:

Proposition 2.4. p1 (K (g)) = K (gR)⊗R C.

The next lemma deals with the P3 component:

Lemma 2.5. ∂ is injective on P3.

Proof. Let b1 be an element of P3. Then ∂(b1) equals 1
3 (b1 +b2 +b3) where b2 and b3 are the two cyclic permutations

of b1. However, if we apply θ = J ⊗ J to the first two components of these elements, we see that

θb1 = −b1

θb2 = b2

θb3 = b3.

Accordingly, b1 =
3
2 (∂(b1)− θ∂(b1)), directly displaying the injectivity of ∂ on P3. �

Putting this together with Lemma 2.3 implies that p3(a) must be zero if ∂(a) = 0. In other words,

p3(K (g)) = 0.

Thus:

Theorem 2.6. The formal curvature module K (g) splits as

K (g) = K1(g)⊕ K2(g),

where K1(g) is the complexification of K (gR) and K2(g) ⊂ ∧
(1,1) V ∗

⊗R g.

Furthermore, the formal Ricci module splits into the sum of the traces of these two modules:

R(g) = R1(g)⊕ R2(g),

with R1(g) a J -symmetric space, and R2(g) a J -hermitian space.
Note that since this splitting result is true for gl(n,C), it is also true for any g ⊂ gl(n,C), even if g is not itself a

complex algebra (such as u(n)).

Example 1. To illustrate these two bundles, we can use two metric examples; first of all, let g = so(n,C). The
complex metric gives an isomorphism g ∼= ∧

(2,0) V ∗, and the extra metric condition that Rhjkl = Rklh j gives us

K1(g) ⊂ g ⊗ g,

K2(g) = 0.

And, of course, the Ricci tensor of such a connection must be J -symmetric.
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Example 2. Conversely, let g = u(n). The hermitian metric gives an isomorphism g = ∧
(1,1) V ∗, and with the

condition Rhjkl = Rklh j as before,

K1(g) = 0,
K2(g) ⊂ g⊗R g.

And, of course, these Kähler manifolds must have J -hermitian Ricci tensor.

3. Volume forms and the Ricci tensor

Let En = ∧
n T ∗ be the volume bundle on a manifold Mn , and ∇ a torsion-free connection on M . Then the curvature

Rhj
k

l of ∇ acts on En via its trace Rhj
k

k . However, since ∇ is torsion-free, the first Bianchi identity gives

Rhj
k

k = Rk j
k

h + Rhk
k

j

= Richj − Ric jh .

This demonstrates the next lemma:

Lemma 3.1. A torsion-free connection ∇ preserves a volume form if and only if its Ricci tensor is symmetric.

Similarly, if n = 2m and ∇ preserves a complex structure, let ECm = ∧
m,0 T ∗

C be the complex volume bundle. Then
the curvature of ∇ acts on ECm via the complex trace

traceCR =
1
2
(traceRR + i traceR J R) .

The first term is just the skew-symmetric part of the Ricci tensor, as before. The second term is given by

Rhj
k

l J l
k = (Rl j

k
h + Rhl

k
j )J

l
k .

Since ∇ preserves the complex structure, Rhj
k

l J n
k = Rhj

n
k J k

l , implying that the previous formula becomes

Rhj
k

l J l
k = Rl j

l
k J k

h + Rhl
l
k J k

j

= −Ric jk J k
h + Richk J k

j ,

the skew-symmetric part of RicJ . This gives us the result:

Lemma 3.2. A torsion-free connection ∇ preserves a complex volume form if and only if the tensors Ric and RicJ
are both symmetric.

And this gives us our first tool for classifying Ricci-flat spaces, notably that

Proposition 3.3. A Ricci-flat space (M,∇), with ∇ torsion-free, has a preserved real volume form, and, if ∇ preserves
a complex structure, it also has a preserved complex volume form.

Example 3. Looking back at Example 1, g = so(n,C), we see that its Ricci tensor is J -symmetric. Being a metric
connection, its Ricci tensor must also be symmetric, so we come to the unsurprising conclusion that a connection with
holonomy so(n,C) must preserve a complex volume form.

Example 4. On the other hand, Example 2 shows that g = u(n) has a Ricci tensor that is J -hermitian, in other words
J -skew. This gives us the slightly more interesting conclusion that a Kähler manifold has a preserved complex volume
form (i.e. has su(n) holonomy) if and only if it is Ricci-flat.
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4. Symplectic subalgebras

These are the various subalgebras of the symplectic and complex symplectic algebras, sl(2n,R) and sl(2n,C). The
list of such algebras that can appear as irreducible holonomy algebras is as follows [16]:

Algebra g Representation V Algebra g Representation V

sp (2n,R) R2n e5
7 R56

sp (2n,C) C2n e7
7 R56

sl (2,R) R4
= �

3 R2 eC7 C56

sl (2,C) C4
= �

3 C2 spin (2, 10) R32

sl (2,R)⊕ so (p, q) R2(p+q), p + q ≥ 3 spin (6, 6) R32

sl (2,C)⊕ so (n,C) C2n , n ≥ 3 spin (12,C) C32

sp (1)⊕ so (n,H) Hn , n ≥ 2 sp (6,R) R14
⊂ ∧

3 R6

sl (6,R) R20 ∼= ∧
3 R6 sp (6,C) C14

⊂ ∧
3 C6

sl (6,C) C20 ∼= ∧
3 C6

su (1, 5) R20

su (3, 3) R20

This section aims to prove the following theorem:

Theorem 4.1. All the algebras in that list, apart from sp(2n,R) and sp(2n,C) themselves, have Ricci-type curvature:

K (g) ∼= R(g).

In other words, connections with these holonomies cannot be Ricci-flat without being flat.

Fix a given algebra g, a proper subset of sp(V,F), V ∼= R2n . There are canonical manifolds with full holonomy
g; they are constructed in [10] using perturbed Poisson structures, and locally any manifold with g-holonomy is
constructed in this way. However, we shall not need this explicit construction, as we shall demonstrate this theorem
algebraically.

Fix a given symplectic form η ∈ ∧
2 V ∗. Given η, and since g is semi-simple, we have a g-invariant projection

�
2 V → g.

Call u ◦ v the projection of u � v. Then, by [10,8,9], the following equalities hold for all g in the list:

η(Au, v) = (A, u ◦ v) (1)
(u ◦ v, s ◦ t)− (u ◦ t, s ◦ v) = (2η(u, s)η(v, t)+ η(u, t)η(v, s)+ η(u, v)η(s, t)), (2)

for all A ∈ g and all u, v, s, t ∈ V , with

(−,−) = −
1

4n + 4
B

where B is the Killing form on g (which is the restriction of the Killing form on sp(V,F)). There is an injection of
Ad(g) into K (g) given by A → ρA,

ρA : ∧
2 V −→ g

u ∧ v −→ 2η(u, v)A − u ◦ (Av)+ v ◦ (Au).

The fact that ρA ∈ K (g) is guaranteed by Eqs. (1) and (2). Paper [16] demonstrates that the whole of K (g) in
constructed in this manner. Then we have the following Proposition, coming from [8]:

Proposition 4.2. Ric(ρA) = 0 iff A = 0.

Proof. We shall use the following lemma:
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Lemma 4.3. For any element k ∈ K (sp(V,F)),

Ric(k)(x, y) = η(k(η−1)x, y).

Proof. Let (e j , f j ) be a basis for V such that, when using the summation convention, η−1
= e j ∧ f j . Thus, continuing

with the summation convention,

Ric(k)(x, y) = tr(k(x,−)y) = η(R(e j ,x)y, f j )− η(R( f j ,x)y, e j )

= −η(R(x,e j ) f j , y)− η(R( f j ,x)e j , y)

= η(R(e j , f j )x, y),

as η maps k to an element of ∧
2 V ∗

⊗ �
2 V ∗. �

Now suppose Ric(ρA) = 0. This is the case iff ρA(η
−1) = 0. But then [8] demonstrates ρA(η

−1) = 0 only when
A = 0. �

We have consequently shown that K (g) ∼= R(g), or in other words that g is Ricci-type.

5. Split spaces: General case

Let (M,∇), be a manifold with affine connection, whose holonomy algebra bundle acts irreducibly on T . Let g
be the fibre of the holonomy algebra at a point, and V the fibre of T at the same point. By our assumptions, V is an
irreducible representation of g.

Then we call M a split space if V is in some way the tensor product of smaller representations of g. In detail, we
say that g is a maximal algebra if there does not exist a non-symmetric holonomy algebra h such that g is a strict
subalgebra of h and

[h, h] = [g, g].

More intuitively, g is maximal if it has the maximal allowed reductive piece. For instance, gl(n), co(n) and u(n) are
maximal, whereas sl(n), so(n) and su(n) are not. The algebra spin(7) is also maximal, since R ⊕ spin(7) is not a
possible holonomy algebra.

Then the following table gives the maximal split algebras:

Algebra g Representation V Restrictions

gl (n,R) �
2 Rn n ≥ 3

gl (n,R) ∧
2 Rn n ≥ 5

gl (n,C) �
2 Cn n ≥ 3

gl (n,C) ∧
2 Cn n ≥ 5

gl (n,C) H+
n (C) ∼= ∧

1,1 Cn n ≥ 3
gl (n,H) H+

n (H) n ≥ 3
gl (n,H) H−

n (H) n ≥ 2
C⊕ sl (m,C)⊕ sl (r,C) Cm

⊗ Cr m > r ≥ 2 or m ≥ r > 2
R⊕ sl (m,R)⊕ sl (r,R) Rm

⊗ Rr m > r ≥ 2 or m ≥ r > 2
R⊕ sl (m,H)⊕ sl (r,H) Hm

⊗Hr ∼= R4mr m > r ≥ 1 or m ≥ r > 1

Here H+
n (F) is the space of self-adjoint n by n matrices with entries in F, whereas H−

n (F) is the complementary
space of skew adjoint ones. Notice that under multiplication by i ,

H+
n (F) ∼= H−

n (C) = ∧
(1,1) Cn

where ∧
(1,1) Cn is defined as in Section 2.3.

All the algebras on this table share the property that

g(1) = V ∗
;

see [16]. Then we aim to prove the following theorem:
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Theorem 5.1.

∂(V ∗
⊗R g(1)) ∼= R(g).

This is enough to specify all of the algebras on this table except for the minimal Segre ones:

C ⊕ sl(m,C)⊕ sl(2,C),
R ⊕ sl(m,R)⊕ sl(2,R),
R ⊕ sl(m,H)⊕ sl(1,H),

for in all other cases the obstruction tensor H1,2(g) = 0, [7], so

Theorem 5.2. All algebras in the table except for the minimal Segre one are Ricci-type. Consequently, neither they
nor any of their subalgebras may be holonomy algebras of Ricci-flat connections.

That theorem will remove most of what is left of possible cone holonomies.
For the rest of this section, any unspecified tensor product ⊗ is taken to be a real tensor product. Let W ∼= Rm and

U ∼= Rr , and let E = Rm
⊗ Rr . Choose (Xk) and (Y j ), bases of Rm and Rr , with dual bases (xk) and (y j ). Then

define µ : E∗
→ E∗

� E∗
⊗ E ,

µ(ab) = ay j
⊗ xkb ⊗ XkY j + xkb ⊗ ay j

⊗ XkY j ,

summing over repeated indices.

Lemma 5.3. The function µ is independent of the choice of bases (Xk) and (Y j ), and is injective.

Proof. µ is the sum of two elements, each a reordering of the tensor product

ab ⊗ x j X j ⊗ ykYk = ab ⊗ I dRm ⊗ I dRr

and that element is obviously independent of the basis. For injectivity, note that the trace of µ(ab) over the last two
elements is

trace µ(ab) = (m + r)ab. �

Given complex structures JU and J W on U and W , we can define the inclusion of the complex tensor product into
the real one, U ⊗J W ⊂ E , with J = (JU , J W ). This is the subbundle spanned by elements of the form

a ⊗ b − J W a ⊗ JU b.

Similarly, if U is a right quaternionic structure, JU
1 JU

2 = −JU
3 , and W a left quaternionic structure, J W

1 J W
2 = J W

3 ,
we may define the quaternionic tensor product bundle U ⊗HW inside E as the intersection

(U ⊗J1 W ) ∩ (U ⊗J3 W ) ∩ (U ⊗J3 W ),

Jk = (JU
k , J W

k ) as before. In fact, we need only take the intersections of the first two bundles.
Similarly, in the case when m = r , W = U , we may define the alternating W ∧ W and symmetric spaces W � W

in the usual way. Then all of our representation spaces V are intersections of these various bundles; for instance in the
real Segre case,

V = E,

whereas in the complex symmetric case,

V = (W ⊗(+J,+J ) W ) ∩ (W � W )

while the complex self-adjoint bundle is given by

V = (W ⊗(+J,−J ) W ) ∩ (W � W ),
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and so on. As any complex structure J has a dual action on the dual bundle, and the transpose operation applies
naturally to a space and its dual, for any of our spaces V ⊂ E , we have a well defined V ∗

⊂ E∗. Consequently, we
have a well defined projection p : E∗

→ V ∗.

Proposition 5.4. For the representation space V ∗
⊂ E∗ of a split algebra g,

p ◦ µ(V ∗) = g(1),

where p is operating on the first element of µ(V ∗).

Proof. Since we know that g(1) ∼= V ∗ and that µ is injective, it suffices to show that p ◦ µ(V ∗) ⊂ g(1). First we shall
use the lemma:

Lemma 5.5. µ(V ∗)x(V ) ⊂ g.

Proof. In the Segre case,

µ(ab)xC D = a(C)xkb ⊗ Xk D + b(D)ay j
⊗ CY j .

This corresponds to an element of gl(m,R)⊕ gl(r,R).
In the skew case,

µ(ab − ba)x(C D − DC) = +a(C)xkb ⊗ Xk D + b(D)ay j
⊗ CY j

− b(C)xka ⊗ Xk D − a(D)by j
⊗ CY j

− a(D)xkb ⊗ XkC − b(C)ay j
⊗ DY j

+ b(D)xka ⊗ XkC + a(C)by j
⊗ DY j ,

which corresponds to

a(C)b ⊗ D − b(C)a ⊗ D − a(D)b ⊗ C + b(D)a ⊗ C ∈ g,

acting diagonally inside gl(m,R) ⊕ gl(m,R). The proof in the symmetric case is the same, modulo a few sign
differences.

In the complex case,

A = µ(ab − Ja Jb)x(C D − JC J D)

= +a(C)xkb ⊗ Xk D + b(D)ay j
⊗ CY j

− Ja(C)xk Jb ⊗ Xk D − Jb(D)Jay j
⊗ CY j

− a(JC)xkb ⊗ Xk J D − b(J D)ay j
⊗ JCY j

+ Ja(JC)xk Jb ⊗ Xk J D + Jb(J D)aby j
⊗ JCY j ,

and then, using the fact that Ja(C) = a(JC) and I d = X k
⊗ xk = −J X k

⊗ J xk , one has

A(+e f ) = A(−JeJ f ),

implying that A is contained in

gl (m, J )⊕ gl(r, J ).

The lemma in the general case then follows from intersections of these various constructions. �

This lemma establishes that p ◦ µ(V ∗) ⊂ V ∗
⊗ g. Moreover, if v ∈ V , w ∈ V ∗,

p ◦ µ(w)(v) = µ(w)(v)

by definition of what p is. Consequently p ◦ µ(w) remains symmetric in the first two elements; consequently

p ◦ µ(V ∗) ⊂ (V ∗
� V ∗

⊗ V ) ∩ (V ∗
⊗ g) = g(1). �

Before continuing, we shall see what properties µ(V ∗) and p ◦ µ(V ∗) share, for the first is easier to work with.
First of all, we know that for v ∈ V , w ∈ V ∗,

p ◦ µ(w)(v) = µ(w)(v).

However, we shall also need:
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Lemma 5.6. µ(V ∗) and p ◦ µ(V ∗) have the same trace over the last two elements — or equivalently over the first
and last element.

Proof. The projection p commutes with the operation of taking traces. However, the trace formula is

trace µ(ab) = (m + r)ab.

So trace µ(V ∗) ⊂ V ∗. Therefore, as p is the identity on V ∗,

trace µ(V ∗) = p ◦ trace µ(V ∗) = trace p ◦ µ(V ∗). �

We are now in a position to prove the main theorem. Let R be the operator taking the Ricci-trace. Recall that

∂(cd ⊗ µ(ab)) = (cd ⊗ ay j )⊗ xkb ⊗ XkY j + (cd ⊗ xkb)⊗ ay j
⊗ XkY j

− (ay j
⊗ cd)⊗ xkb ⊗ XkY j − (xkb ⊗ cd)⊗ ay j

⊗ XkY j .

Lemma 5.7. The linear maps R ∂(I dE∗ ⊗ p ◦ µ) and R ∂(I dE∗ ⊗ µ), both mapping E∗
⊗ E∗ to itself, are equal on

V ∗
⊗ V ∗

⊂ E∗
⊗ E∗.

Proof. This is a direct consequence of the two identities for p ◦ µ and µ that we have just seen. The first two terms
of R ∂(V ∗

⊗ µ(V ∗)) involve evaluating an element of µ(V ∗) on an element of V ∗; the second two terms involve the
tensor product of an element of V ∗ with the trace of an element of µ(V ∗). And one can replace µ with p ◦ µ in all
these cases. �

Then the final statement is a consequence of:

Proposition 5.8. The linear map P = R ∂(I dE∗ ⊗ µ) is an isomorphism from E∗
⊗ E∗ to itself.

Proof.

P(cd ⊗ ab) = ad ⊗ cb + cb ⊗ ad − (m + r)cd ⊗ ab.

Therefore
−1

m + r
P(cd ∧ ab) = cd ∧ ab,

and since m + r > 2,

2
4 − (m + r)2

(
P(ad � cb)+

m + r
2

P(cd � ab)
)

= cd � ab

showing that P is surjective, and, equivalently, bijective. �

All this implies that the ∂(V ∗
⊗ g(1)) component of the curvature is Ricci-type. Then the whole curvature must be

Ricci-type, except for the minimal Segre algebras. We will deal with those in the next chapter.

6. Minimal Segre algebras

There is no uniform terminology for algebras of this type. As the general algebras C ⊕ sl(m,C) ⊕ sl(r,C) are
sometimes called Segre structures, I have elected to call them ‘minimal Segre’ when r is minimal — though they are
sometimes referred to as ‘paraconformal’. Recall that these are the algebras

C ⊕ sl(m1,C)⊕ sl(2,C),
R ⊕ sl(m2,R)⊕ sl(2,R),
R ⊕ sl(m3,H)⊕ sl(1,H).

Notice that for m1 = m2 and m1 = 2m3, the second two algebras are real forms of the first. Furthermore, Ricci-
flatness forces the preservation of a complex volume form by Lemma 3.2; we shall consequently only have to use the
complex algebra g = sl(m,C)⊕ sl(2,C) in this section.
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Theorem 6.1. Let ∇ be a Ricci-flat affine connection whose holonomy is contained in sl(m,C) ⊕ sl(2,C). Then its
holonomy is contained in sl(m,C).

As a direct consequence of this theorem, we can say that any subalgebra or real form of g, acting irreducibly, cannot
be a Ricci-flat holonomy algebra. This concerns the following algebras:

Algebra Representation

sl (2,C)⊕ sl (n,C) C2
⊗C Cn ∼= C2n , n ≥ 3

sl (2,R)⊕ sl (n,R) R2
⊗R Rn ∼= R2n , n ≥ 3

sl (1,H)⊕ sl(n,H) H1
⊗HHn ∼= R4n , n ≥ 2

sl (2,C)⊕ sp (2n,C) C2
⊗C C2n ∼= C4n , n ≥ 2

sl (2,R)⊕ sp (2n,R) R2
⊗R R2n ∼= R4n , n ≥ 2

sp (1)⊕ sp (p, q) H⊗HH(p,q) ∼= R(4q,4q), p + q ≥ 2

Of course in that last case the result – that a Ricci-flat quaternionic Kähler manifold is hyper-Kähler – is well
known [18,3].

In order to prove this theorem, we shall use the quaternionic approach from paper [2], modified to incorporate the
full complex case.

Let G be the frame bundle for the g-structure, and let J1, J2 and J3 be sections of the bundle Q = G ×G sl(2,C),
chosen so that they obey the quaternionic identities Jα Jβ = −δαβ I d + εαβγ Jγ . Thus the complex span of these
elements covers all of Q.

Let ∇ be any connection associated with this g-structure. The curvature R∇ of ∇ decomposes as

R∇
′

+ Ω1 J1 + Ω2 J2 + Ω3 J3,

where R∇
′

is a curvature term with values in G ×G sl(m,C), and the Ωα are sections of ∧
2 T ∗

⊗ C.
Note the commutator relation

[R∇ , Jα] = 2(Ωγ Jβ − Ωβ Jγ )

where (α, β, γ ) is a cyclic permutation of (1, 2, 3). Let Ωα′

and Ωα′′

be the real and imaginary parts of Ωα . Since all
elements of g are trace-free, we may calculate the Ωα using the formula

Ωα′

(X,Y ) = −
1

4m
Tr(R∇

(X,Y ) ◦ Jα)

and

Ωα′′

(X,Y ) =
1

4m
Tr(R∇

(X,Y ) ◦ i Jα).

Note that these traces are real traces.
There are two other operators we shall be needing: the i-linearity operator˜ and the operator ̂, the hermitian

operator with respect to the complex structure. In detail, for any section F of ∧
2 T ∗

⊗ C,

F̃(X, Y ) =
1
2
(F(X, Y )− i F(X, iY ))

while

F̂(X, Y ) =
1
4

(
F(X, Y )−

3∑
k=1

F(Jk X, JkY )

)
.

It is easy to see that both these operators are projections, i.e. square to themselves. The i-linearity operator has certain
interesting properties; indeed

Lemma 6.2. If F is a section of ∧
(2,0) T ∗

⊗ C – the tensor product in this expression is real – then F̃ is skew-
symmetric. If F is a section of ∧

(1,1) T ∗
⊗ C, then

F(X, Y ) = F̃(X, Y )− F̃(Y, X).
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Proof.

F̃(X, Y )+ F̃(Y, X) =
1
2
(F(X, Y )+ F(Y, X)− i F(X, iY )− i F(Y, i X))

= 0 +
−i
2
(F(X, iY )+ F(iY, X))

= 0,

if F ∈ Γ (∧(2,0) T ∗
⊗ C). On the other hand,

F̃(X, Y )− F̃(Y, X) =
1
2
(F(X, Y )− F(Y, X)− i F(X, iY )+ i F(Y, i X))

= F(X, Y )+
−i
2
(F(X, iY )+ F(iY, X))

= F(X, Y ),

if F ∈ Γ (∧(1,1) T ∗
⊗ C). �

We now aim to show that

Proposition 6.3. If ∇ is Ricci-flat, then Ωα
= 0 for all α.

Proof. We shall prove this statement purely algebraically. Since we may, as in Section 2.3, split the curvature module
into two components, the i-symmetric and i-hermitian components, both obeying the Bianchi identity and whose
Ricci tensors are respectively i-symmetric and i-hermitian, it suffices to prove this result in the two cases where ∇ is
assumed to have purely i-symmetric and purely i-hermitian curvature.

We shall deal with the first case first. Notice that this implies that Ωα is a section of ∧
(2,0) T ∗

⊗ C.
Let (Ek) be a local frame on the manifold, with dual frame (ek). Then using the Bianchi identity, the function

−4mΩα′

(JαX,JαY ) is equal to

Tr(R∇

(JαX,JαY ) ◦ Jα) =

∑
k

(R∇

(JαX,JαY ) JαEk)xek

= −

∑
k

(R∇

(JαY,JαEk )
JαX)xek −

∑
k

(R∇

(JαEk ,JαX) JαY )xek

= −

∑
k

(R∇

(JαY,JαEk )
X)xJαek −

∑
k

(R∇

(JαEk ,JαX)Y )xJαek

−

∑
k

(2Ωγ

(JαY,JαEk )
JβX − 2Ωβ

(JαY,JαEk )
Jγ X)xek

−

∑
k

(2Ωγ

(JαEk ,JαX) JβY − 2Ωβ

(JαEk ,JαX) Jγ Y )xek

= −Ric(JαY, X)+ Ric(JαX, Y )

− 2(Ωγ ′

(JαY,Jγ X) + Ωβ ′

(JαY,Jβ X) + Ωγ ′

(Jγ Y,JαX) + Ωβ ′

(JβY,JαX))

− 2(Ωγ ′′

(JαY,i Jγ X) + Ωβ ′′

(JαY,i Jβ X) + Ωγ ′′

(i Jγ Y,JαX) + Ωβ ′′

(i JβY,JαX)).

The Ric terms disappear, of course, and using the corresponding expression for −4mΩα′′

(JαX,JαY ), one gets the equation

−4mΩα
(JαX,JαY ) = −4(Ω̃γ

(JαY,Jγ X) + Ω̃β

(JαY,Jβ X) + Ω̃γ

(Jγ Y,JαX) + Ω̃β

(JβY,JαX)), (3)

since the Ωα are i-symmetric. Notice that this equation implies that Ωα is completely i-symmetric, i.e. that Ωα
= Ω̃α .

By replacing Y with JαY and defining Ω =
∑

k Ω k
(·,Jk ·)

, we may rewrite this equation as

(m − 2)Ωα
Y,(JαX) + Ω(JαX,JαY ) + Ω(Y,X) = 0. (4)

By summing over α = 1, 2, 3, we get the identity

(m + 1)Ω(Y,X) +

∑
α

Ω(JαX,JαY ) = 0,
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from which it follows that, if Ω s and Ωa are the symmetric and antisymmetric parts of Ω ,

−mΩ s
= 4Ω̂ s and (m + 2)Ωa

= 4Ω̂a .

which, since m + 2 6= 4 and −m 6= 4, implies that Ω = 0 and hence, by Eq. (4), that Ωα
= 0.

We now turn to the i-hermitian piece, for which the proof starts in the same manner, except that Eq. (3) becomes

−4mΩα
(JαX,JαY ) = −4(Ω̃γ

(JαY,Jγ X) + Ω̃β

(JαY,Jβ X) − Ω̃γ

(JαX,Jγ Y ) − Ω̃β

(JαX,JβY )).

Notice the exchange of indices and signs in the last two terms. Since the section F̃ is defined by the relation
F̃(X, iY ) = i F̃(X, Y ) and F̃ remains i-hermitian if F is, we may deduce that

mΩ̃α
(JαX,JαY ) = −Ω̃γ

(JαX,Jγ Y ) − Ω̃β

(JαX,JβY ),

or, equivalently, after replacing X with JαX ,

(m − 1)Ω̃α
(X,JαY ) + Ω̃(X,Y ) = 0.

Summing over α gives us (m + 2)Ω̃ = 0 and, consequently,

Ω̃α
= 0.

And then the relation Ωα(X, Y ) = Ω̃α(X, Y )−Ω̃α(Y, X) from Lemma 6.2 gives us the required vanishing of Ωα . �

And this is all we need to prove Theorem 6.1.

7. The case of E6

Also present in the table of possible irreducible torsion-free affine holonomy algebras are various subalgebras and
real forms of

g = C∗
· eC6 .

We aim to prove that g is Ricci-type, and that consequently all subalgebras and real forms of it are. The representation
space of g is

V ∼= C27.

This is the standard representation space of g. The algebra eC6 is in fact defined as the maximal algebra preserving
a certain non-degenerate cubic Ψ on V [1]. Non-degeneracy means that the Ψ -induced maps V → �

2 V ∗ and
�

2 V → V ∗ are of maximum rank. The full algebra g must preserve Ψ up to scaling.
The Dynkin diagram of eC6 has six nodes, and the maximal weights are given by sextuplets of non-negative integers.

In this optic,

V = (1, 0, 0, 0, 0, 0)
V ∗

= (0, 0, 0, 0, 1, 0).

The dual representation of eC6 on V ∗ must preserve a non-degenerate cubic Θ ∈ �
3 V . We choose the scale of Θ by

requiring, in abstract index notation,

Ψ jklΘ jkl
= 27.

We will use [15] in order to calculate various tensor products of representations of eC6 . Using Θ , there is a
decomposition of

�
2 V ∗

= V ⊕ U.

Using [15], one has that U is irreducible and

U = (0, 0, 0, 0, 2, 0).
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This decomposition implies that

Ψ jkmΘ jkl
= I dl

m,

as a map V → V or V ∗
→ V ∗. Similarly,

Ψ j pmΘ jkl
= Π kl

pm,

where Π is the projection of �
2 V ∗ onto its submodule V , along U . Using [15], we can decompose �

2 V ∗
⊗ V ,

�
2 V ∗

⊗ V = (1, 0, 0, 0, 2, 0)⊕ (0, 0, 0, 0, 1, 1)⊕ (0, 0, 0, 0, 2, 0)⊕ (0, 1, 0, 0, 0, 0)⊕ U∗
⊕ 2V ∗.

Now, we know by [13,16] that

g(1) = V ∗

H1,2(g) = 0.

Therefore the module g(1) is contained inside the two V ∗ components of the previous decomposition. Then define two
maps V ∗

→ �
2 V ∗

⊗ V by

µ1(v j ) = ΨkmrΘ jklv j

µ2(v j ) = v j I dl
k + vk I dl

j

where ( jk) denotes symmetrisation of the indices.

Lemma 7.1. µ1 and µ2 are injective and non-isomorphic.

Proof. The traces of µ1 and µ2 are

trace µ1(v j ) = v j

trace µ2(v j ) = (28)v j ,

proving that both are non-zero, and hence (as V ∗ is irreducible) injective. Now contract them with an element wl of
V ∗:

µ1(v j )xwl = ΨkmrΘ jklv jwl = Π jk
mr (v jwl)

µ2(v j )xwl = v jwl + w jvl ,

and these two elements cannot be isomorphic for general v j and wl . �

Consequently any map ν : V ∗
→ �

2 V ∗
⊗ V is given as

ν = λ1µ1 + λ2µ2,

for complex constants λ1 and λ2.

Proposition 7.2. Let ν : V ∗
→ g(1) be an invariant isomorphic map. Then ν has λ1 = −λ2.

Proof. We shall leave abstract index notation to the side for the moment, and we will need to provide a more explicit
description of Ψ and Θ . There is an inclusion sp(8,C) ⊂ eC6 described as follows. Let ω be the symplectic form for
sp(8,C). Then there is a map

∧
2 C8∗

→ ∧
8 C8∗,

by wedging with ω3. The kernel of this map is 27-dimensional; we shall call it V ∗, as it is the dual natural
representation space of eC6 . To confirm this, consider the non-degenerate cubic Θ defined on it by

Θ(a, b, c)ω4
= a ∧ b ∧ c ∧ ω.

This cubic is obviously preserved by sp(8,C), giving us the required inclusion. Let (X j ) be a basis for V , with dual
basis (η j ). We may express ω as

η1 ∧ η2 + η3 ∧ η4 + η5 ∧ η6 + η7 ∧ η8.
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Consequently a basis for V is given by

η1 ∧ η2 − η3 ∧ η4,

η1 ∧ η2 − η5 ∧ η6,

η1 ∧ η2 − η7 ∧ η8,

ηα ∧ ηβ ,

where α and β are numbers chosen from distinct sets in the collection {1, 2}, {3, 4}, {5, 6}, {7, 8}.
We will work on an explicit example to find the (unique) relation between λ1 and λ2. So let

a = η4 ∧ η6

b = η1 ∧ η4

c = η3 ∧ η6

d = η2 ∧ η5.

As a consequence, Θ(ab) = Θ(bc) = 0 and Θ(bc) 6= 0.
Now

a ∧ d ∧ ω = −η2 ∧ η4 ∧ η5 ∧ η6 ∧ η7 ∧ η8.

The only basis element this wedges with in a non-trivial way is η1 ∧ η3, to give 1. Consequently,

Θ(ad) = X1
∧ X3

= Z .

We now aim to calculate Π (ad) = Ψ(Z). If (Y σ ) is a basis for �
2 V ∗ with dual basis (yσ ),

Ψ(Z) =

∑
σ

Ψ(ZY σ )yσ .

If (Y σ ) is the tensor product of the basis elements of V ∗, the only Y σ such that Ψ(ZY σ ) 6= 0 are

X2
∧ X5

� X4
∧ X6

X2
∧ X6

� X4
∧ X5

X2
∧ X7

� X4
∧ X8

X2
∧ X8

� X4
∧ X7

X2
∧ X4

�
1
2
(X1

∧ X2
− X5

∧ X6)

X2
∧ X4

�
1
2
(X1

∧ X2
− X7

∧ X8).

Consequently there is an η2 ∧ η5 � η4 ∧ η6 summand in Π (ad). In other words, if W = X4
∧ X6,

Π (ad)xW = η2 ∧ η5 = d.

Note that Ψ(d, b, c) = −1.
An element e of g preserves Θ up to scale. In our case Θ(abc) = 0, so there is no issue of scale. Explicitly,

0 = Θ((e · a), b, c)+ Θ(a, (e · b), c)+ Θ(a, b, (e · c))

since Θ is zero on abc. Because of the choices of a, b, and c that we made, this ensured that

0 = Θ((e · a), b, c).

The above formula must hold replacing e with the element of eC6 , that is ν(d)xW . This implies

0 = λ1Θ(d, b, c)+ λ2Θ(d, b, c)

= −(λ1 + λ2),
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since

µ1(d)xaxW = Π (ad)xW = d

µ2(d)xaxW = W (d)a + W (a)d = d. �

Theorem 7.3. The algebra

g = C∗
· eC6 ,

acting on V ∼= C27, is Ricci-type.

Proof. The curvature bundle of g is

K (g) = ∂(V ∗
⊗ m(V ∗)).

As before, define R as the Ricci-trace map V ∗
⊗ V ∗ to itself. Then by the properties of µ1 and µ2 expounded in

Lemma 7.1,

R(w ⊗ v) = λ1Π (w � v)− 2λ1w � v + 27λ1w ⊗ v.

Now the image of R is not symmetric, and ∧
2 V ∗ is an irreducible representation of eC6 ; consequently the entire ∧

2 V ∗

is in the image of R. Now looking at the symmetric part,

R(w � v) = λ1(Π (w � v)+ 25w � v).

Consequently

R(Π (w � v)) = 26λ1Π (w � v),

and

R((1 − Π )(w � v)) = 25λ1(1 − Π )(w � v).

Consequently, as λ1 6= 0 since ν is non-trivial, R is an isomorphism, and

g = C∗
· eC6

is Ricci-type. �

8. Low dimensional cases

In this section, we aim to finish the classification of which holonomy algebras acting irreducibly can correspond to a
Ricci-flat connection. For though we have excluded many holonomy algebras from being Ricci-flat, and paper [5] has
constructed Ricci-flat cones for most of the others, we have not settled the existence of general Ricci-flat connections
in some cases. These are the algebras concerned (those that can be Ricci-flat have been marked with a ∗):

Algebra g Representation V Dimensions

so (p, q) R(p,q) p + q = 3, 4∗

so (n,C) Cn n = 3, 4∗

sl (n,R) Rn n = 2
sl (n,C) Cn n = 1, 2∗

sl (n,H) Hn n = 1∗

Of these, we can immediately exclude sl(2,R) and sl(1,C), as any Ricci-flat 2-manifold is flat. In contrast, any
sl(n,H) connection must be Ricci-flat by definition. Manifolds with holonomy so(p, q), p + q = 3, have vanishing
Weyl tensor as all 3-manifolds do. However, a Ricci-flat manifold has full curvature contained in the Weyl tensor.
Thus Ricci-flat manifolds with these holonomies must be flat. The result holds, similarly, in the holomorphic category
of so(3,C).
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For the case of sl(2,C), let x and y be complex coordinates with corresponding holomorphic vector fields
X, Y ∈ Γ (TC). Then define the connection ∇ as

∇X X = ∇X X = ∇X X = ∇X X = f Y

and all other terms involving X, Y and their conjugates are zero. Here f is a complex-valued function that is
independent of y (i.e. Y f = Y f = 0). This ∇ is a torsion-free connection respecting the real structure on TC — and
consequently equivalent to a real connection representing the corresponding complex structure on T . The curvature
of ∇ is given by

RX X X = (X f )Y − (X f )Y ,

the corresponding RX X X term, and all other curvature terms are zero. This makes ∇ Ricci-flat. We now use f as a
bump function to smoothly move ∇ to a flat connection (moving along the x direction, of course), while remaining
Ricci-flat and complex along the way. Given two copies of this manifold, we may glue two distinct patches on each
manifold while identifying the coordinate x with y and y with i x . This may be done so that the resulting structure is
a manifold M . We thus have a complex, Ricci-flat connection ∇ such that, directly from the curvature, we have the
holonomy elements

X → Y,

and

Y → i X.

And these two elements generate the full sl(T,C) holonomy.
In order to generate the remaining holonomy algebras, we turn to the Schwarzschild metric [12]. In this (Lorentzian)

case, the metric is

g = −Cdt2
+

1
C

dr2
+ r2(dθ2

+ sin θdψ2)

where C = 1 −
2M
r for some mass M . There is also a Euclidean Schwarzschild metric (given by replacing −dt2 with

dt2) and a split Schwarzschild metric (given by replacing dψ2 with −dψ2). Of course, since the metric is real analytic
in the coordinates, there is also a complex Schwarzschild metric, considering t, r, θ and ψ as complex coordinates.

Then elementary but laborious calculations establish that all these metrics are Ricci-flat, and all have maximal
holonomy — it turns out that the curvature tensor is enough to generate the full holonomy algebra.

Acknowledgement

The author would like to thank Dr. Nigel Hitchin, under whose supervision and inspiration this paper was crafted.
This paper appears as a section of the author’s thesis [6].

References

[1] J.F. Adams, Lectures on Exceptional Lie Groups, in: Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, ISBN: 0-
226-00526-7; 0-226-00527-5, 1996, xiv+122 pp.

[2] D.V. Alekseevsky, S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. (4) 171 (1996)
205–273.

[3] D.V. Alekseevsky, Riemannian spaces with unusual holonomy groups, Funktsional. Anal. i Prilozhen 2 (2) (1968) 1–10 (in Russian).
[4] S. Armstrong, Projective holonomy I: Principles and properties, math.DG/0602620, 2006.
[5] S. Armstrong, Projective holonomy II: Cones and complete classifications, math.DG/0602621, 2006.
[6] S. Armstrong, Tractor holonomy classification for projective and conformal structures, Doctoral Thesis, Bodleian Library, Oxford University,

2006.
[7] R. Bryant, Classical, exceptional and exotic holonomies: A status report, in: Actes de la Table Ronde de Géométrie Différentielle, 1992,
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